Author's Solution for Cash Award question of

June 2023

In the above picture, O is a point outside the circle. From O , straight lines are drawn to the circle to create chords AB, $C D, P Q \& R S$ as shown in the picture. Given that $\angle A O C=\angle P O R$ and $K, L, M \& N$ are the midpoints of $A B$, CD, PQ \& RS respectively. Prove that LM || KN.

Question framed by
DR. M. RAJA CLIMAX
Founder Chairman
CEOA Group of Institutions, Madurai, India

Author's Solution

Before giving the solution let us see some geometric results which I am going to use in the solution.

Result -1:

If K is a point inside or outside of a circle with centre ' O ' and if hundred or more chords of that circle pass through the said K, then, the midpoints of all those hundred or more chords will be concyclic in a single cirlce whose diameter is OK.

Proof for result -1

$A B, C D, E F \& G H$ are chords concurrent at ' K ', a point outside the circle with centre ' O '

Construction :

Let M1, M2, M3 \& M4 be the midpoints of chords AB, CD, EF \& GF respectively.
Join OM1, OM2, OM3 \& OM4. Join OK
Proof:
Since M1, M2, M3 \& M4 are midpoints of the chords, OM1 $\perp \mathrm{AB}, \mathrm{OM} 2 \perp C D, O M 3 \perp E F \&$ $\mathrm{OM} 4 \perp \mathrm{GH}$ (see the picture)

OK acts as hypotenuse for the right angled Δs OM1K, OM2K, OM3K \& OM4K.
This shows that M1 \& M2 lie on the semicircle formed on OK and M3 \& M4 are also lying on the other semicircle formed on the same OK as diameter.
$\therefore O, K, \mathrm{M} 1, \mathrm{M} 2, \mathrm{M} 3 \& \mathrm{M} 4$ are concyclic.
Similarly, the midpoint of any chord passing through ' K ' will lie on this circle only.

Result - 2

When pairs of chords are concurrent on a point K inside or outside a circle with equal angles between them, then the distance between the midpoints of each such pair of chords is equal.

$A B, C D, E F \& G H$ are pairs of chords passing throug

$\angle A K C=\angle E K G$
To prove:
M1M2 = M3M4

Proof:

In the previous result, we proved that M1, M2, M3, M4, O \& K are concyclic. Now given that $\angle A K C=\angle E K G$, ie $\angle M 1 K M 2=\angle M 3 K M 4$.

Since equal angles have equal chords,
M1M2 =M3M4
Similarly even if any other pair of chords with the same angle between them passes through K , the distance between their midpoints will also be equal to M1M2 or M3M4.

Now let us see the solution for the problem.

Given :

O is the point outside the circle.
chords $A B, C D, P Q \& R S$ are concurrent at O
$\angle A O C=\angle P O Q$.
$\mathrm{L}, \mathrm{K}, \mathrm{M} \& \mathrm{~N}$ are the midpoints of
$A B, C D, P Q \& R S$ respectively.

To prove:
LM || KN
Construction :
Mark the center of the circle G. Join GO, GK, GL, GM \& GN, MN, LK, MK \& LN.

Proof:

As per the result - 1 above (case 2) OGLMN are concyclic on a single circle.
As per result -2 chord LK = chord MN.
$\therefore \angle L M K=\angle M K N$
\therefore LM || NK
Proved.

